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Vanessa Lanoue, PhD,* Ye Jin Chai, PhD,* Julie Z. Brouillet, MSc, Sarah Weckhuysen, MD, PhD,

Elizabeth E. Palmer, MD, Brett M. Collins, PhD, and Frederic A. Meunier, PhD

Neurology® 2019;93:1-10. doi:10.1212/WNL.0000000000007786

Correspondence

Dr. Meunier

f.meunier@uq.edu.au

Abstract
De novo pathogenic variants in STXBP1 encoding syntaxin1-binding protein (STXBP1, also
known asMunc18-1) lead to a range of early-onset neurocognitive conditions, most commonly
early infantile epileptic encephalopathy type 4 (EIEE4, also called STXBP1 encephalopathy),
a severe form of epilepsy associated with developmental delay/intellectual disability. Other
neurologic features include autism spectrum disorder and movement disorders. The pro-
gression of neurologic symptoms has been reported in a few older affected individuals, with the
appearance of extrapyramidal features, reminiscent of early onset parkinsonism. Understanding
the pathologic process is critical to improving therapies, as currently available antiepileptic
drugs have shown limited success in controlling seizures in EIEE4 and there is no precision
medication approach for the other neurologic features of the disorder. Basic research shows that
genetic knockout of STXBP1 or other presynaptic proteins of the exocytic machinery leads to
widespread perinatal neurodegeneration. The mechanism that regulates this effect is under
scrutiny but shares intriguing hallmarks with classical neurodegenerative diseases, albeit
appearing early during brain development. Most critically, recent evidence has revealed that
STXBP1 controls the self-replicating aggregation of α-synuclein, a presynaptic protein involved
in various neurodegenerative diseases that are collectively known as synucleinopathies, in-
cluding Parkinson disease. In this review, we examine the tantalizing link among STXBP1
function, EIEE, and the neurodegenerative synucleinopathies, and suggest that neural de-
velopment in EIEE could be further affected by concurrent synucleinopathic mechanisms.
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Syntaxin binding protein 1 (STXBP1), also known as
Munc18-1, is a member of the Sec1/Munc18-1 family of
proteins that are important regulators of the secretory and
synaptic vesicle fusion machinery that underpins hormonal
and neuronal transmission, respectively. STXBP1 promotes
vesicular priming by opening syntaxin-1A, a critical step that
allows it to engage in the soluble N-ethylmaleimide-sensitive
factor attachment protein receptor (SNARE) complex.1 Ge-
netic ablation of Stxbp1 in mice leads to perinatal paralysis-
induced lethality,2 demonstrating that STXBP1 is involved in
synaptic transmission. STXBP1 also plays an important role in
the early stages of neuritogenesis, which depends on vesicular
fusion.3

Early infantile epileptic encephalopathy 4 (EIEE4) (MIM
612164) is linked to mutations in STXBP1,2,4 and pathogenic
de novo variants of STXBP1 lead to a range of neurologic
features, including autism and movement disorders.5,6 EIEE4
is a severe early-onset form of developmental delay/
intellectual disability that is often associated with intractable
seizures. Individuals with EIEE4 exhibit a broad spectrum of
seizure types, including epileptic spasms, focal seizures, and
tonic seizures. Seizure onset is most common in the first year
of life, with the most frequent EEG features being burst
suppression and hypsarrhythmia. However, as epilepsy is not
universally present in individuals with de novo STXBP1 var-
iants,7 STXBP1 encephalopathy (STXBP1-E) constitutes
a more appropriate term. A range of neuroradiologic features
have been reported in patients with STXBP1-E who have
undergone MRI, including cerebral atrophy, abnormal mye-
lination, and hypoplasia of the corpus callosum.7–9 Focal
cortical dysplasia has been confirmed after epilepsy surgery in
2 patients,7,8 one of whom had a normal MRI scan. It is
therefore possible that subtle abnormalities in cortical de-
velopment are present in more individuals, but that these
remain underdiagnosed due to limitations of current neuro-
radiologic techniques. Seizures, when present, are frequently
resistant to polytherapy, and there is no targeted therapy for
the other neurologic symptoms of the condition. Therefore,
a more precise therapeutic approach is highly desirable.5

Over the last 2 decades, research has linked variants in a range
of presynaptic proteins, which are ultimately involved in
mediating neurotransmitter release, to both early-onset neu-
rodevelopmental conditions such as EIEE and to later-onset
neurodegenerative conditions such as synuclein (SNCA)–
related Lewy body dementia (MIM 12775010) and Parkinson
disease (PD) (MIM 168601 and 60554311; table 1). In-
terestingly, recent studies have reported a few older patients

with STXBP1-E who displayed symptoms reminiscent of
juvenile-onset parkinsonism, with tremor and prominent ex-
trapyramidal features.12,13 Such a neurodegenerative course is
in line with animal knockdown studies of STXBP1 and other
major presynaptic vesicle proteins such as syntaxin-1B,
cysteine-string protein α (CSPα), and SNAP25, which have
reported the presence of widespread neurodegeneration
(table 2).

Whereas the pathologic mechanism of EIEE4 is generally
thought to stem from haploinsufficiency, leading to reduced
levels of functional STXBP1 protein, other lines of evidence
are supportive of a gain of toxic function mechanism leading
to neurodegeneration. This review gathers the currently
available evidence linking STXBP1 variants to either a loss of
function or a gain of toxic function. We suggest that in ad-
dition to the neurodevelopmental phenotype, STXBP1-E
contains a neurodegenerative aspect stemming from a proag-
gregative effect of pathogenic variants on α-synuclein, a key
protein in the pathogenesis of PD.

Genetics of STXBP1-E
A broad range of pathogenic germline heterozygous STXBP1
variants have been reported in nearly 200 affected individuals,
including frameshift, missense, splice site, and nonsense se-
quence variants, together with whole gene and intragenic
deletions (figure 1). Most variants occur de novo in simplex
families, although germline mosaicism with recurrence in
siblings has occasionally been reported. A combination of
germline and somatic mosaicism for a multi-exonic STXBP1
deletion has also been found in an individual with STXBP1-E
and focal cortical dysplasia, with evidence of a mosaic ho-
mozygous deletion in resected dysplastic brain tissue.6 The
distribution of pathogenic variants is surprisingly widespread
in the exonic sequence, although structural analysis of path-
ogenic missense variants has demonstrated that they are sig-
nificantly more likely to occur at highly conserved locations
and to be buried inside the protein core region. A number of
recurrent variants have been reported, particularly in domains
2 and 3. Large clinical cohort studies have not been able to
provide clear phenotypic–genotypic correlations. Affected
individuals with deletion, frameshift, splice site, or nonsense
variants are not clearly different in terms of the severity or
range of neurologic or developmental presentations, at least in
childhood, compared to those individuals with missense var-
iants.7 This suggests a common pathologic mechanism that
remains to be established.

Glossary
CSPα = cysteine-string protein α; EIEE4 = early infantile epileptic encephalopathy type 4; FCD = focal cortical dysplasia;
Hsp70 = heat shock protein 70; PD = Parkinson disease; SNARE = soluble N-ethylmaleimide-sensitive factor attachment
protein receptor; STXBP1 = syntaxin binding protein 1; STXBP1-E = STXBP1 encephalopathy.
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Evidence for a loss of function
mechanism
Although the genetic link between STXBP1 and encephalopa-
thy has been well-documented, it remains unclear whether the
pathology stems from a loss of STXBP1 function or from a gain
of pathologic function associated with the aggregation of
STXBP1-mutated proteins. However, the fact that many var-
iants lead to similar pathologic outcomes points to a loss of
function/haploinsufficiency mechanism. Many pathogenic var-
iants in STXBP1, such as the recurrent variant NM_003165.3:
c.539G>A; Cys180Tyr,4 are located in the hydrophobic core of
the protein and have been hypothesized to destabilize the

secondary structure of STXBP1, thereby decreasing its ther-
mostability and thus vesicular exocytosis.4,14 Consistent with
these previous findings, Suri and collaborators15 used in silico
structural modeling to demonstrate that the protein stability of
STXBP1 pathogenic missense variants was typically reduced
compared to that of wild-type STXBP1. This provides some
evidence that the mechanism of pathogenicity for missense
variants in STXBP1 is haploinsufficiency through destabilization
of the native folded state of the protein, making it prone to
misfolding, aggregation, and degradation. This viewpoint aligns
with the findings of other groups who have provided direct
evidence of the destabilization and aggregation of several
pathogenic missense variants in STXBP1.4,16–18

Table 1 Variants in presynaptic proteins implicated in human neurodevelopmental disorders, epilepsy, and
neurodegenerative diseases

Variants in affected individuals Observed phenotypes (MIM numbers if available)

Heterozygous and homozygous variants in UNC13A
encoding Munc13-1

• De novo heterozygous p.Pro814Leu variant in UNC13A (Munc13-1) associated with
delayed neurologic development, dyskinetic movement disorder, and autism47

• Homozygous truncating variant in UNC13A associated with syndrome of microcephaly,
cortical hyperexcitability, and fatal myasthenia

De novo variants in STXBP1 encoding Munc18-1/2 • De novo heterozygous missense or loss of function variants associated with early
infantile epileptic encephalopathy (MIM 612164), intellectual disability, autism
movement disorder,4,48,49 and parkinsonism

De novo and inherited variants in STX1B encoding
syntaxin-1B

• STX1B deletions, truncating and missense variants associated with fever-associated
epilepsy syndromes ranging from simple febrile seizures to severe epileptiform
encephalopathies (MIM 616172)50

• Polymorphism in STX1B associated with susceptibility to Parkinson disease51

De novo variant in SYT1 encoding synaptotagmin-1 • De novo heterozygous p.Ile368Thr variant associated with early-onset dyskinetic
movement disorder, severe motor delay, and profound cognitive impairment52

Inherited missense variants in LRRK2 encoding leucine-
rich repeat serine/threonine-protein kinase 2

• Inherited heterozygousmissense variants associated with Lewy body Parkinson disease,
nigrostriatal cell loss without α-synuclein-positive Lewy bodies or Lewy neurites,
progressive supranuclear palsy, and multiple system atrophy (MIM 168600; 607,060)8,53,54

Variants of genes encoding Ras-associated (Rab) proteins • Homozygous or compound heterozygous loss of function and missense variants in
RAB3GAP1, RAB3GAP2, and RAB1B associated with syndromic neurodevelopmental
disorders characterized by eye, nervous system, and endocrine abnormalities, Warburg
Micro syndrome (MIM 600118; 614,225 and 614,222), and Martsolf syndrome (MIM
212720); neurologic involvement includes intellectual disability, microcephaly, and
progressive spastic paraplegia55,56

• Inherited hemizygous missense and truncating variants in GDI1 associated with
nonsyndromic X-linked intellectual disability (MIM 300849)

Variants in SNCA encoding α-synuclein • Inherited heterozygous missense, truncating and copy number variants in SNCA
associated with Lewy body dementia (MIM 127750), Parkinson disease (MIM 168601 and
605543), paralysis, and motor deficits11,57

Variants of genes encoding synapsins • Inherited hemizygous truncation variants in SYN1 associated with intellectual disability,
autism, and epilepsy (MIM 300491)58

• Truncating andmissense variants in SYN2 associatedwith autism59,60 and polymorphism
associated with predisposition to idiopathic generalized epilepsy

• Polymorphisms in SYN3 associated with psychiatric disease33

De novo variants in SNAP25 encoding synaptosomal-
associated protein

• De novo missense and truncating variants in both isoforms of SNAP25 associated with
intellectual disability, epilepsy, and cerebellar ataxia (MIM 616330)61

Variants in SYNJ1 encoding synaptojanin1 • Autosomal recessive missense and truncating SYNJ1 variants associated with neonatal
refractory epilepsy and neurodegenerative disease (MIM 617389)32

• A recurrent homozygous missense variant p.Arg258Gln associated with early-onset
parkinsonism (MIM 615530)62,63

Variants in PPP3CA encoding protein phosphatase 3,
catalytic subunit, alpha isoform

• De novo missense and nonsense variants in PPP3CA associated with early-onset
epileptic encephalopathy (MIM 617711)64

Variants in DNM1 encoding dynamin 1 • De novo missense variants associated with early-onset epileptic encephalopathy (MIM
616346)65,66
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STXBP1-E: A disorder of vesicular
fusion, cortical development,
neuritogenesis, or neurodegeneration?
Understanding the pathology of STXBP1-E is critical to
finding new therapeutic approaches. In the following sections,
we gather the evidence pointing to either a gain or a loss of
function of STXBP1 in vesicular fusion, early brain de-
velopment and neuritogenesis, and neurodegeneration.

Pathogenic STXBP1 variants affect vesicular
fusion
Given the critical role of STXBP1 in exocytosis, loss of
function has been suggested as a potential pathologic mech-
anism that leads to defective synaptic transmission. Indeed,
several STXBP1 variants are unable to regulate normal neu-
ronal exocytosis, resulting in defective synaptic transmission.14,19

Although the common pathogenic variants STXBP1Cys180Tyr

and STXBP1Cys552Arg are able to form a normal binary
complex with syntaxin-1A, 2 studies have reported a defect in
exocytosis.14,19 First, STXBP1Cys180Tyr was unable to rescue
stimulated exocytosis at 37°C.14 Second, STXBP1Cys552Arg

was unable to accelerate SNARE-mediated lipid content
mixing, suggesting an impairment in membrane fusion. Al-
though this mutant bound normally to the cis-SNARE com-
plex, it did not promote the trans-SNARE zippering required
for the fusion reaction.19 Finally, other loss of function var-
iants have been described, such as Pro335Leu18 or
Pro335Ala.20 These variants are located within domain 3A,
which is critical for vesicular priming,14,21 and are unable to
undergo the conformational change that triggers the opening
of syntaxin-1A. Taken together, these lines of evidence point
to an imbalance in vesicular fusion due to reduced STXBP1
activity.

Haploinsufficiency has also been proposed in recent studies
using cultured Stxbp1 knockout neurons18 and heterozygous
Stxbp1+/− mice and cultured neurons.22,23 Interestingly, in

vitro, both heterozygous and homozygous deletion of Stxbp1
led to an inhibition of synaptic transmission18,23 whereas in
vivo, in the heterozygous state, no effect on neurotransmitter
release was detected, although STXBP1 levels were re-
duced.22 When disease-causing STXBP1 variants were
expressed in Stxbp1+/− mouse neurons, they all resulted in
severely decreased protein levels,22 some more than expected
for haploinsufficiency, suggesting an additional gain of func-
tion (or dominant negative) mechanism such as templating/
co-aggregating effects of some of the STXBP1 variants on the
wild-type protein. These additional effects have been char-
acterized in vitro in cultured cells,17 and in vivo.18 Indeed,
studies have demonstrated that STXBP1 variants act as
a template to promote the aggregation of wild-type
STXBP1.17,18 The Stxbp1+/− mouse model22 is likely to be
an excellent resource for future studies of STXBP1-E as it
recapitulates some of the key human phenotypic features.22

Pathogenic STXBP1 variants affect
cortical development
Hamada et al.24 recently demonstrated that knockdown of
Stxbp1 expression by in utero electroporation of small hairpin
RNA resulted in abnormal cortical neuron migration in mice.
This effect was almost completely rescued by re-expression of
Stxbp1, suggesting that Stxbp1 could play a role in cortical
development by affecting both cortical neuron migration and
neuritogenesis. However, no change in the morphology of the
cortex could be detected in the Stxbp1 knockout.2 In patients
with STXBP1-E, MRI is often reported as normal, or dem-
onstrating subtle changes such as cerebral atrophy, myelina-
tion abnormalities, and hypoplasia of the corpus callosum.7,8

However, diagnostic MRI may miss subtle abnormalities in
cortical development; for example, Stamberger et al.5 repor-
ted a patient with a de novo germline STXBP1 variant who
had undergone epilepsy surgery prior to genetic diagnosis and
presented with evidence of a focal cortical dysplasia (FCD)
type 1a with abnormal radial cortical lamination in resected
brain. More recently, Uddin et al.6 reported 7 patients with
heterozygous de novo variants in STXBP1, 3 of whom had
suspected or confirmed FCD. One patient in this cohort

Table 2 Knockout of various exocytic proteins leads to paralysis and neurodegeneration

Knockout mice of exocytic proteins Observed phenotypes

STXBP1/Munc18-12/2 • Severe paralysis and neuronal apoptosis2

• Neurodegeneration, tau phosphorylation, neurofibrillary tangles, and accumulation of insoluble proteins27

• Neuronal cell death and early Golgi abnormalities31

Syntaxin-1B2/2 • Paralysis and motor function impairments28

• Disrupted brain morphology and neuronal cell death28

• Reduced spontaneous and evoked neurotransmitter release45

• Cell death and neurodegeneration31

SNAP252/2 • Cell death and neurodegeneration29,31

Cysteine-string protein α • Decrease in SNAP25 and impaired SNARE assembly67

• Neurodegeneration

Abbreviation: SNARE = soluble N-ethylmaleimide-sensitive factor attachment protein receptor.
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underwent epilepsy surgery, confirming a FCD type 1b as well
as mosaicism for homozygosity of STXBP1 mutations in the
dysplastic tissue. Further clinical studies are required to assess
the effect of heterozygous STXBP1 mutations on cortical
development, and the possible role of somatic mosaicism as
a second hit in the STXBP1 gene in patients with focal onset
to their seizures.

Pathogenic STXBP1 variants affect
neuritogenesis
The early-onset forms of STXBP1-E, such as EIEE4, are
characterized by severe developmental delay/intellectual

disability. This aspect has been linked to neuronal de-
velopment, with important variation in dendritic tree com-
plexity and length. Dendrite growth relies on the supply of
membranous material,3 notably through exocytosis. STXBP1
has been shown to play an important role in dendrite out-
growth, as neurons from Stxbp1 knockout mouse embryos
present a decreased total length of their dendritic tree,25

a finding that has been confirmed in Drosophila.26 The in-
volvement of STXBP1 in the development and maintenance
of neurites has also been highlighted by Yamashita et al.,16

who observed impaired neurite outgrowth in an induced
pluripotent stem cell–generated neuronal culture derived

Figure 1 Mutations in STXBP1 linked to early infantile epileptic encephalopathy type 4 (EIEE4)

(A) The structure of STXBP1 is shown in the ribbon diagram in complex with syntaxin-1A (blue; top panels). The bottom panels represent the STXBP1 surface
shownwith transparency to highlight that themutations lie within the hydrophobic core of the protein and not at the surface. Residues that have been found
to bemutated in EIEE4 patients are represented bymagenta spheres for those identified inmultiple patients, and blue for those that have been reported only
once. (B) Schematic diagram of the STXBP1 gene, illustrating the location of point mutations and partial deletions in each of its domains (updated from
references 7 and 15).
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from a patient carrying an STXBP1 nonsense variant
(Arg367*). Therefore, Stxbp1 haploinsufficiency or knockout
seems to influence neurite morphology. Whether these effects
stem from a direct effect of loss of STXBP1 function on
dendritic tree morphogenesis or result from neuro-
degeneration due to a secondary/concomitant gain of toxic
function will need to be assessed.

Pathogenic STXBP1 variants induce
neurodegeneration
The first evidence that neurodegeneration could contribute to
STXBP1-E came from an early homozygous Stxbp1 knockout
mouse study.2 As expected from a loss of function, these mice
exhibited perinatal paralysis-induced lethality. However,
widespread neuronal degeneration was detected in utero,2

suggesting that STXBP1 deletion triggers a neuronal cell
death program that leads to neurodegeneration. Remarkably,
no disruption in the developing cortex has been described in
either homozygous2 or heterozygous22 Stxbp1 knockdown
mice. This was confirmed in a recent study, which showed that
Stxbp1 knockdown mice present widespread neuro-
degeneration despite normal early stages of spinal motor circuit
formation.24 The latter result suggests that neurotransmitter
release is dispensable for the formation of neural circuits.24 The
study also demonstrated defects in the trafficking of syntaxin-
1A,24 postsynaptic density 95, the tyrosine receptor kinase B,
and deleted in colorectal cancer receptors,27 and pathologic
similarities to Alzheimer disease, such as defects in tau phos-
phorylation, the development of neurofibrillary tangles, and the
accumulation of insoluble proteins, suggesting a link with other
neurodegenerative conditions.

Evidence for a role in neurodegeneration also comes from in
vitro studies. The expression of STXBP1-E variants in hip-
pocampal neurons leads to an increased proportion of
pyknotic nuclei and extensive cell death.17 Furthermore,
neurites from these STXBP1-E variant-expressing neurons
also exhibit classical signs of neurodegeneration, including the
presence of neuritic spheroids that are inherent to neurode-
generative conditions such as Alzheimer disease.

Interestingly, STXBP1 is not the only synaptic gene whose
disruption leads to neuronal degeneration, as genetic ablation
of other major presynaptic vesicle proteins produces similar
neurodegenerative phenotypes.28–30 For example, syntaxin-1B
knockout mice display paralysis and motor function impair-
ments as well as neuronal cell death,28,31 while SNAP25 and
CSPα knockout mice exhibit neuronal cell death and neuro-
degeneration (table 2). Finally, different variants in the same
genes encoding presynaptic proteins have been linked to both
early and later onset neurodegeneration in humans; for exam-
ple, autosomal recessive missense and truncating variants in the
synaptojanin 1 (SYNJ1) gene are associated with both severe
neonatal-onset refractory epilepsy with a neurodegenerative
disease course (MIM 61738932) and early-onset parkinsonism
(MIM 61553033). Together, these findings suggest a key role of
presynaptic vesicle proteins in supporting neuronal survival.29

Toxic protein aggregation is a recurrent feature of neurode-
generative disorders, and the fact that many STXBP1 variants
exhibit strong aggregation when expressed in cells in vitro
suggests the possibility of a gain of pathogenic function via
neurodegeneration.4,14 Neurodegenerative diseases are often
associated with toxic protein aggregation based on their ability
to partially or fully unfold and to act as templates for co-
aggregation of endogenous wild-type protein.34,35 STXBP1
joins the pool of such proteins, as STXBP1-E variants can co-
aggregate wild-type STXBP1 in vitro, indicating that these
variants have the ability to recruit new wild-type monomers to
generate large aggregates.17 This has been confirmed in
neurosecretory cells and rat hippocampal neurons, where
STXBP1 variants dominantly sequester wild-type STXBP1
into aggregates.17 It is worth noting that a recent study carried
out in vitro and in vivo also found co-aggregation of wild-type
and mutant STXBP1 but did not find toxicity associated with
these aggregates.18

Evidence for the chaperoning activity of
STXBP1 for α-synuclein, controlling its
self-replicating aggregation
Some STXBP1-E variants were shown to form aggregates that
display ring-like structures reminiscent of Lewy bodies upon
overexpression in heterologous cells or primary rat hippo-
campal neurons (figure 2, A and B). These structures are
positive for the aggregate-prone protein α-synuclein, a hall-
mark of the Lewy bodies present in patients with PD and
related disorders.10 Importantly, the neurons overexpressing
STXBP1-E variants also contain STXBP1 aggregates that are
positive for endogenous α-synuclein, suggesting the possibil-
ity of a gain of pathologic function associated with co-
aggregation of STXBP1-E variants and α-synuclein.

Molecular chaperones help fold newly synthesized proteins,
transport proteins into organelles, and reverse misfolding and
aggregation of proteins.36 A range of emerging evidence suggests
that STXBP1 has a chaperoning function for α-synuclein.17

One major function of molecular chaperones is to prevent
proteins and assembled protein complexes from aggregating37

(figure 3). Knocking out STXBP1 in neurosecretory cells
(MKO-PC12 cells) is sufficient to significantly increase the
number of endogenous and expressed α-synuclein aggregates,
effects that can be fully rescued by re-expression of wild-type
STXBP1 in these cells.17 This suggests that STXBP1 plays
a key role in chaperoning α-synuclein, and that STXBP1 de-
letion is sufficient to promote α-synuclein aggregation.

STXBP1-linked encephalopathy variants co-aggregate α-syn-
uclein when expressed in rat hippocampal neurons and gene-
edited neurosecretory cells in vitro. Expression of these
mutants can effectively recruit endogenous α-synuclein into
aggregates.17 Conversely, overexpression of PD-linked
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α-synuclein variants (Ala30Pro and Ala53Thr) causes en-
dogenous and overexpressed wild-type STXBP1 to co-
aggregate with α-synuclein.

STXBP1 may directly control the aggregation of α-synuclein,
as its binding to both endogenous and overexpressed α-syn-
uclein has been shown by pull-down assay.17 This binding is
potentiated by STXBP1-linked encephalopathy variants.

Taken together, these findings point to a critical role for
STXBP1 in controlling α-synuclein aggregation, and suggest
that STXBP1 acts as a molecular chaperone for α-synuclein.
STXBP1 is already known to chaperone syntaxin-1A. Indeed,
syntaxin-1A is ectopically expressed in rat kidney fibroblast
cells and other non-neuronal cells lacking STXBP1. In these
cells, syntaxin-1A localizes to the Golgi network or endo-
plasmic reticulum. Upon coexpression of STXBP1, syntaxin-
1A primarily localizes correctly to the plasma membrane.38,39

Role of other α-synuclein chaperones
in synaptic transmission and
neurodegeneration
The significance of STXBP1 in the potential chaperoning of
α-synuclein could have implications in synucleinopathies, in-
cluding PD and Lewy body dementia. The primary compo-
nent of the Lewy bodies that characterize these diseases are
aggregates of α-synuclein, an abundant neuronal protein that

Figure 2 STXBP1C180Y-GFP variant expressed in neurosecretory cells forms large aggregates, some displaying ring-like
structures reminiscent of Lewy bodies

(A) Representative image shows
Lewy body–like structure in MKO-
PC12 cells expressing STXBP1C180Y-
emGFP (fromChai et al.,17 2016, with
permission). Scale bar: 10 μm. (B)
Immunohistochemistry using iso-
dipeptide primary antibody
(81D1C2) and rabbit polyclonal an-
tibody for α-synuclein (Chemicon) in
the substantia nigra of a patient with
Parkinson disease with Lewy body
dementia46 (copyright 2003, Na-
tional Academy of Sciences). Scale
bar: 10 μm. (C) Representative con-
focal images of a hippocampal neu-
ron at 8 days in vitro show
aggregates positive for both α-syn-
ucleinWT-mCherry and STXBP1C180Y-
emGFP (fromChai et al.,17 2016, with
permission). Arrow indicates the co-
localized aggregates. Scale bar:
20 μm.

Figure 3 Energy landscape of α-synuclein folding and
misfolding

The folding and aggregation of α-synuclein are competing reactions. During
the course of folding, chaperonemolecules facilitate energetically favorable
intramolecular interactions and prevent progression toward the aggrega-
tive unfolded state. α-Synuclein is prone to adopting misfolded states, ulti-
mately leading to protein aggregation. Chaperones such as those indicated
here regulate this aggregative process, thereby promoting folding to the
native state conformation.
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localizes in the presynaptic nerve terminals. Missense
mutations (Ala30Pro, Glu46Lys, and Ala53Thr) of α-synu-
clein and duplications and triplications of the gene that
encodes it are linked to early-onset PD.40 It has previously
been reported that α-synuclein aggregation is controlled by
classical chaperones such as heat shock protein 70
(Hsp70).41 Several studies have shown that Hsp70 and the 2
co-chaperones, CSPα and small glutamine-rich TRP protein
(SGT), are chaperones that are involved in maintaining ef-
ficient neurotransmitter release and regulating synaptic
vesicle exocytosis.42 Knocking out CSPα in mice causes
defects in synaptic transmission, cell death, and neuro-
degeneration.42 Deletion of the CSP gene in flies also causes
defects in synaptic transmission, leading to paralysis and
premature death.43

Similar to CSPα, α-, β-, and γ-synuclein are abundant pre-
synaptic proteins that are peripherally associated with syn-
aptic vesicles. Strikingly, transgenic overexpression of human
wild-type α-synuclein eliminates the lethal neurodegeneration
in CSPα knockout mice, suggesting that upregulation of
α-synuclein can compensate for loss of CSPα activity, re-
storing SNARE complexes to their correct levels.30

Considering that CSPα and Hsp70 have also been shown to
chaperone α-synuclein and control its aggregative propensity,
further experimental work is needed to assess whether
STXBP1 has an overlapping chaperoning function for
α-synuclein. It will be interesting to establish whether over-
expression of STXBP1 can compensate for loss of CSPα, or
vice versa, to reduce α-synuclein aggregation and restore the
deficits in synaptic exocytosis that lead to neurodegeneration.

Discussion
In this review, we provide an overview of the effects of
pathogenic variants in STXBP1-E and discuss the current
evidence related to the underlying pathophysiologic mecha-
nisms of this disorder. Some studies point to a mechanism
involving heterozygous loss of STXBP1 function, with sub-
sequent reduced expression, leading to a defect in synaptic
transmission. Although no obvious domain selectivity in
missense variants can be seen, most tested STXBP1 variants
have been shown to destabilize the native folded state of the
protein, making it prone to misfolding, aggregation, and
degradation. Neurons expressing STXBP1 variants also ex-
hibit classical signs of neurodegeneration, including neurite
loss, pyknotic nuclei, and spheroid formation (figure 4A),
phenotypes that suggest a possible gain of toxic function.
STXBP1 was recently found to control the self-replicating
aggregation of α-synuclein, a presynaptic protein that is in-
volved in various neurodegenerative diseases, and missense
variants have been shown to co-aggregate with both wild-type
STXBP1 and α-synuclein. This suggests that disorders caused
by STXBP1 mutations may be involved in α-synuclein
pathology.

There are still a limited number of older individuals with
a confirmed molecular diagnosis of STXBP1-E.2 This reflects
current referral patterns for genetic testing, whereby primarily
pediatric patients access diagnostic genetic testing.44,45 Lon-
gitudinal clinical studies of cohorts of affected individuals with
STXBP1-E, or studies of a larger cohort of older individuals,
are required in order to clearly delineate the frequency of
progressive neurologic symptoms, and to clarify if there is any
genotypic–phenotypic correlation in the occurrence of later
neurologic complications.

We propose that synaptic dysfunction caused by hap-
loinsufficiency of STXBP1 together with STXBP1 and
α-synuclein aggregation as well as the loss of function of
STXBP1 could lead to a unique combination of abnormal
neurodevelopment, cell death, and neurodegeneration (figure
4B). In the longer term, targeting STXBP1 as a major regu-
lator of α-synuclein aggregation may lead to improved clinical
outcomes in the treatment of both synucleinopathies and
STXBP1-E.
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synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 2005;123:
383–396.

31. Santos TC, Wierda K, Broeke JH, Toonen RF, Verhage M. Early Golgi abnormalities
and neurodegeneration upon loss of presynaptic proteins Munc18-1, syntaxin-1, or
SNAP-25. J Neurosci 2017;37:4525–4539.

32. Hardies K, Cai Y, Jardel C, et al. Loss of SYNJ1 dual phosphatase activity leads to early
onset refractory seizures and progressive neurological decline. Brain 2016;139:2420–2430.

33. Porton B, Wetsel WC, Kao HT. Synapsin III: role in neuronal plasticity and disease.
Semin Cell Dev Biol 2011;22:416–424.

34. Fares MB, Maco B, Oueslati A, et al. Induction of de novo α-synuclein fibrillization in
a neuronal model for Parkinson’s disease. PNAS 2016;113:E912–E921.

35. Prusiner SB, Woerman AL, Mordes DA, et al. Evidence for α-synuclein prions causing
multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci USA 2015;
112:E5308–E5317.

36. Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein
folding in the cytosol. Nat Rev Mol Cell Biol 2004;5:781–791.

37. Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat
Rev Mol Cell Biol 2013;14:630–642.

38. Malintan NT, Nguyen TH, Han L, et al. Abrogating Munc18-1-SNARE complex
interaction has limited impact on exocytosis in PC12 cells. J Biol Chem 2009;284:
21637–21646.

39. Martin S, Tomatis VM, Papadopulos A, et al. The Munc18-1 domain 3a loop is
essential for neuroexocytosis but not for syntaxin-1A transport to the plasma mem-
brane. J Cell Sci 2013;126:2353–2360.
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